Odd harmonious labeling of super subdivisión graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Odd Harmonious Labeling of plus Graphs

A graph G(p, q) is said to be odd harmonious if there exists an injection f : V (G) → {0, 1, 2, · · · , 2q − 1} such that the induced function f∗ : E(G) → {1, 3, · · · , 2q − 1} defined by f∗(uv) = f(u) + f(v) is a bijection. In this paper we prove that the plus graph Pln , open star of plus graph S(t.P ln), path union of plus graph Pln, joining of Cm and plus graph Pln with a path, one point u...

متن کامل

Odd Harmonious Labeling of Some New Families of Graphs

A graph G(p, q) is said to be odd harmonious if there exists an injection f : V (G) → {0, 1, 2, · · · , 2q − 1} such that the induced function f∗ : E(G) → {1, 3, · · · , 2q − 1} defined by f∗(uv) = f(u) + f(v) is a bijection. A graph that admits odd harmonious labeling is called odd harmonious graph. In this paper, we prove that shadow and splitting of graph K2,n, Cn for n ≡ 0 (mod 4), the grap...

متن کامل

Super Pair Sum Labeling of Graphs

Let $G$ be a graph with $p$ vertices and $q$ edges. The graph $G$ is said to be a super pair sum labeling if there exists a bijection $f$ from $V(G)cup E(G)$ to ${0, pm 1, pm2, dots, pm (frac{p+q-1}{2})}$ when $p+q$ is odd and from $V(G)cup E(G)$ to ${pm 1, pm 2, dots, pm (frac{p+q}{2})}$ when $p+q$ is even such that $f(uv)=f(u)+f(v).$ A graph that admits a super pair sum labeling is called a {...

متن کامل

Further results on odd mean labeling of some subdivision graphs

Let G(V,E) be a graph with p vertices and q edges. A graph G is said to have an odd mean labeling if there exists a function f : V (G) → {0, 1, 2,...,2q - 1} satisfying f is 1 - 1 and the induced map f* : E(G) → {1, 3, 5,...,2q - 1} defined by f*(uv) = (f(u) + f(v))/2 if f(u) + f(v) is evenf*(uv) = (f(u) + f(v) + 1)/2 if f(u) + f(v) is odd is a bijection. A graph that admits an odd mean labelin...

متن کامل

Odd Sum Labeling of Some Subdivision Graphs

An injective function f : V (G)→ {0, 1, 2, . . . , q} is an odd sum labeling if the induced edge labeling f∗ defined by f∗(uv) = f(u) + f(v), for all uv ∈ E(G), is bijective and f∗(E(G)) = {1, 3, 5, . . . , 2q − 1}. A graph is said to be an odd sum graph if it admits an odd sum labeling. In this paper, we have studied the odd sum property of the subdivision of the triangular snake, quadrilatera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proyecciones (Antofagasta)

سال: 2019

ISSN: 0716-0917

DOI: 10.4067/s0716-09172019000100001